Психология

Что такое паралогизмы и софизмы?

Что такое паралогизмы и софизмы?

Оба термина означают ошибку в логике, однако первый термин подразумевает непреднамеренную погрешность. Софизм же — преднамеренное нарушение требований логики, интеллектуальное мошенничество, попытка выдать истину за ложь.

Термин «софизм» в переводе с греческого значит «хитрость». Изначально в Древней Греции софистами называли ремесленников, достигших мастерства в своем деле. Позже кличка перекочевала к профессиональным философам-мыслителям, только позже она приобрела нарицательное значение для тех, кто хитро обманывает слушателей. Как видите, философов в Древней Греции воспринимали весьма скептично.

Что такое паралогизмы и софизмы?

Задачи с нарушенной логикой

Почему брусок остается в состоянии покоя, когда на нем стоит гиря весом в 1 кг? Ведь в данном случае на него действует сила тяжести, разве это не противоречит первому закону Ньютона? Следующая задача – натяжение нити. Если закрепить гибкую нить одним концом, приложив ко второму силу F, то натяжение в каждом ее участке станет равным F. Но, так как она состоит из бесчисленного количества точек, то и сила, приложенная ко всему телу, будет равна бесконечно большому значению. Но согласно опыту, этого не может быть в принципе. Математические софизмы, примеры с ответами и без можно найти в книге под авторством А.Г. и Д.А. Мадера.

софизмы и парадоксы

Действие и противодействие. Если третий закон Ньютона справедлив, то какая бы сила ни была приложена к телу, противодействие будет удерживать его на месте и не даст сдвинуться.

Плоское зеркало меняет местами правую и левую сторону отображаемого в нем предмета, тогда почему верх и низ не изменяются?

Знаменитые софисты и их софизмы

Протагор

Первый, кто называл себя софистом и публично выступал в качестве учителя добродетели, был, согласно Платону, Протагор. Из его произведений сохранились лишь немногие отрывки. Наиболее знаменательным из отрывков стал его задокументированный спор с Еватлом. Этот спор и считают одним из первых софизмов, который очень по душе лично мне:

Еватл был учеником Протагора. По заключённому между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Но, закончив обучение, он не стал участвовать в процессах, это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Своё требование Протагор обосновал так: – Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой судебный процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то решение суда будет в мою пользу, и заплатить нужно будет согласно этому решению. Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору: – Действительно, я либо выиграю судебный процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора.

Горгий был одним из первых ораторов нового типа — не только практиком, но и теоретиком красноречия, за плату обучавшим юношей из богатых семей говорить и логически мыслить. Такие учителя назывались «специалистами по мудрости», то есть софистами.

Горгий утверждал, что он учит не добродетели и мудрости, а только ораторскому искусству. Отходя от темы у него есть замечательный совет по ведению спор:

Серьёзные доводы противника опровергай шуткой, шутки — серьёзностью

Также к софистам можно отнести Гиппия, Крития, Антифона и многих других эллинов.

софизм мем с динозавром

Логические парадоксы

Софизмы и парадоксы – два разных понятия. Парадоксом называется суждение, которое может доказать, что суждение одновременно является как ложным, так и истинным. Это явление разделяется на 2 вида: апория и антиномия. Первое подразумевает появление вывода, который противоречит опыту. Примером служит парадокс, сформулированный Зеноном: быстроногий Ахиллес не в состоянии догнать черепаху, так как она при каждом последующем шаге будет отдаляться от него на некоторое расстояние, не давая ему догнать себя, ведь процесс деления отрезка пути бесконечен.

софизмы примеры

Антиномия же – это парадокс, предполагающий наличие двух взаимоисключающих суждений, которые одновременно истинны. Фраза «я лгу», может являться как истиной, так и ложью, но если это правда, то человек, произносящий ее, говорит истину и не считается лжецом, хотя фраза подразумевает обратное. Существуют интересные логические парадоксы и софизмы, часть которых будет описана ниже.

Примеры и виды софизмов

Все софизмы можно разделить на:

  • логические
  • терминологические
  • психологические
  • математические (алгебраические, геометрические).

Рассмотрим все типы. Наиболее обширным и увлекательным типом являются логические софизмы. Одна из самых распространенных логических ошибок , которой пользуются софисты quaternio terminorum, то есть употребление среднего термина в большой и в меньшей посылке не в одинаковом значении: «Все металлы — простые вещества, бронза — металл: бронза — простое вещество» (здесь в меньшей посылке слово «металл» употреблено не в точном химическом значении слова, обозначая сплав металлов).

Вот еще пару примеров: Полупустое есть то же, что и полуполное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное «Знаешь ли ты, о чём я хочу тебя спросить?» — «Нет». — «Знаешь ли ты, что добродетель есть добро?» — «Знаю». — «Об этом я и хотел тебя спросить. А ты, выходит, не знаешь то, что знаешь». Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего

Логический парадокс «Крокодил»

У жительницы Египта крокодил выхватил ребенка, но, сжалившись над женщиной, после ее мольбы он выдвинул условия: если она угадает, вернет ли он ей ребенка или нет, то он, соответственно, отдаст или не отдаст его. После этих слов мать задумалась и сказала, что ребенка он ей не отдаст.

На это крокодил ответил: ребенка ты не получишь, ведь в случае, когда сказанное тобой правда, я не могу отдать тебе ребенка, так как если отдам, твои слова уже не будут истинными. А если это неправда – я не могу вернуть ребенка по уговору.

После чего мать оспорила его слова, говоря, что он в любом случае должен отдать ей ребенка. Слова обосновывались следующими доводами: если ответ был правдой, то по договору крокодил должен был вернуть отнятое, а в противном случае он также обязан отдать ребенка, ведь отказ будет означать, что слова матери справедливы, а это опять же обязывает вернуть малыша.

геометрические софизмы

Как раскусить софизм?

  • Внимательно прочитать условие предложенной вам задачи. Начинать поиск ошибки лучше с условия предложенного софизма. В некоторых софизмах абсурдный результат получается из-за противоречивых или неполных данных в условии, неправильного чертежа, ложного первоначального предположения, а далее все рассуждения проводятся верно. Это и вызывает затруднения при поиске ошибки. Все привыкли, что задания, предлагаемые в различной литературе, не содержат ошибок в условии и, поэтому, если получается неверный результат, то ошибку они ищут непременно по ходу решения.
  • Установите области знаний (темы), которые отражены в софизме, предложенных преобразованиях. Софизм может делиться на несколько тем, которые потребуют детального анализа каждой из них.
  • Выясните, соблюдены ли все условия применимости теорем, правил, формул, соблюдена ли логичность. Некоторые софизмы построены на неверном использовании определений, законов, на «забывании» условий применимости. Очень часто в формулировках, правилах запоминаются основные, главные фразы и предложения, всё остальное упускается. И тогда второй признак равенства треугольников превращается в признак «по стороне и двум углам».
  • Проверяйте результаты преобразования обратным действием.
  • Часто следует разбить работу на небольшие блоки и проконтролировать правильность каждого такого блока.

Нетология

Нарушения логики в математике

Обычно математические софизмы доказывают равенство неравных чисел или арифметических выражений. Один из самых простых образцов – сравнение пятерки и единицы. Если от 5 отнять 3, то получится 2. При вычитании 3 из 1 получается -2. При возведении обоих полученных чисел в квадрат получаем одинаковый результат. Таким образом, первоисточники этих операций равны, 5=1.

математические софизмы

Рождаются математические задачи-софизмы чаще всего благодаря преобразованию исходных чисел (например – возведению в квадрат). В итоге получается, что результаты этих преобразований равны, из чего делается вывод о равенстве исходных данных.

Аргументы в дискуссии

Доводы, приводимые людьми во время обсуждения, разделяются на объективные и некорректные. Первые направлены на разрешение проблемной ситуации и нахождение правильного ответа, в то время как вторые преследуют цель победить в споре и не более того.

Первым видом некорректных аргументов можно считать аргумент к личности того человека, с кем ведется спор, обращение внимания на его черты характера, особенности внешности, убеждения и прочее. Благодаря такому подходу спорящий человек воздействует на эмоции собеседника, тем самым убивая в нем разумное начало. Существуют также аргументы к авторитету, силе, выгоде, тщеславию, верности, невежеству и здравому смыслу.

Итак, софизм – что это? Прием, помогающий в споре, или бессмысленные рассуждения, не дающие никакого ответа и потому не имеющие ценности? И то,и другое.

История

Софизм как приём обучения был введён древнегреческими софистами в греческих полисах ок. V в. до н.э. — профессиональными учителями, обучавшими знатную молодежь красноречию, ораторскому мастерству и искусству публичных дебатов в целях подготовки к политической или иной карьере. В отличие от философов, занимавшихся научными изысканиями в русле методологии институализированных философских школ, софисты были личными наёмными учителями и опирались на плюралистическую методологию, нацеленную на решение задач. Философы обвиняли методы софистов в субъективизме и релятивизме, что повлекло отрицательную оценку деятельности софистов как софистической. Платон («Евтидем», «Протагор», «Теэтет») развенчивал софизмы и методы их решения как «мнимое знание», «призрачные подобия знания, но не истинные» («Софист»). Аристотель считал софизмы «натаскиванием», а не научным поиском истины, и составил в «О софистических опровержениях» первую классификацию софизмов — уловок софистов, выделив 13 видов софизмов, возникающих из-за двусмысленностей двоякого рода: 6 связанных с оборотами речи, и 7 паралогизмов, или неправильно построенных рассуждений. Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажется верной и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической: за счёт метафоричности речи, омонимии или полисемии слов, амфиболий и пр., нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (Последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах»).

Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога»

. Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель сформулировал логику.

А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1 / (n + 1) < 1 / n».

Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора о том, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла»). С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском «принципе непротиворечия» (см. Логический закон) и, уже в современной логике, — в истолкованиях и требовании доказательств «абсолютной» непротиворечивости. Перенесённая из области чистой логики в область «фактических истин», она породила особый «стиль мышления», игнорирующий диалектику «интервальных ситуаций», то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм «куча» («Одно зерно — не куча. Если n зёрен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости». Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного «интервала неразличимости» к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту «нетерпимое противоречие», которое математическая мысль «преодолевает» в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что описание и практика применения столь важных в этой сфере «законов тождества» (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение «один и тот же объект», какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса «внутри» интервала неразличимости можно противопоставить решение «над этим интервалом», то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно говорить о «преодолении» противоречия.

По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах. Сочинение «Софизмы» (в двух книгах) написал ученик Аристотеля Феофраст (D.L. V. 45). В средние века в Западной Европе составлялись целые коллекции софизмов. Например, собрание, приписываемое английскому философу и логику XIII века Ричарду Софисту, насчитывает свыше трехсот софизмов. Некоторые из них напоминают высказывания представителей древнекитайской школы имён (мин цзя).

Исходное

Похожие статьи

Кнопка «Наверх»
Мальчикам и Девочкам

Наш сайт использует файлы cookies, чтобы улучшить работу и повысить эффективность сайта. Продолжая работу с сайтом, вы соглашаетесь с использованием нами cookies и политикой конфиденциальности.

Принять